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Abstract

A model of a planet, consisting of two solid bodies – a core and a mantle – between which there is a spherical layer of a
viscous incompressible liquid, is considered. The gravitational interaction between the core and the mantle is taken into account.
The problem is investigated in a limited formulation, when the mass centre of the planet moves in a fixed elliptical orbit in the
gravitational field of a point mass, while the mutual displacements of the core and the mantle are to be determined. The mutual
displacements of the core and the mantle of the planet, and also the velocity field of the viscous liquid in the spherical layer, are
obtained using multiparameter perturbation theory, where the Reynolds number, the orbit eccentricity and the ratio of the radius of
the planet to the distance to its attracting centre are taken as small parameters. In addition, an approximate theory of gyroscopes
is used to analyse the equations of motion. The results obtained are illustrated by the example of the motion of the Earth-Moon
system.
© 2006 Elsevier Ltd. All rights reserved.

The complex internal structure of the planets of the solar system produces relative motion of its component parts
and affects the dynamic processes (the rotation of a planet around its mass centre, tidal phenomena, evolution of the
orbit, and tectonic processes as a consequence of the relative displacements of parts of the planet).1–4 The choice of
any particular model to describe the motion of the planet and its component parts depends on its dimensions (mass),
which determine the gravitational field inside the planet and affect the physical state of the planet material. If the planet
dimensions are small, it represents a solid deformable body. When the mass of the planet increases a liquid layer can
be formed inside it.

A model was considered previously in Ref. 5 under the conditions that the continuous medium between the core and
the mantle of the planet has viscoelastic properties, but was unable to investigate “rotations” of the core with respect
to the mantle.

1. Formulation of the problem

Suppose the planet consists of a core and a mantle, between which there is a spherical layer of uniform viscous
incompressible liquid. This type of model corresponds to modern representations of the internal structure of the Earth,
which consists of a solid core, a spherical layer of viscous liquid and a solid mantle. Phase transitions from one type
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Fig. 1.

of continuous medium to the other (solid – liquid – solid) are related to the value of the pressure inside the Earth,
which increases as one approaches the centre of the Earth, and the temperature distribution inside the Earth. Inside the
mantle the temperature and pressure are low and, as a consequence of this, the material is in a solid state (the model
of an absolutely rigid or deformable body). As one approaches the centre of the Earth, the temperature and pressure
increase, and at a certain distance r from the centre of the Earth (r = b) the pressure p(r) becomes equal to p*(T(b)),
where p*(T) is a function which defines the relation between the pressure and the temperature T, at which the solid -
liquid phase transition occurs. Further, as one approaches the centre of the Earth, the pressure and temperature vary
in such a way that when r = a the pressure becomes equal to p*(T(a)), at which the inverse transition from the liquid
phase to the solid phase occurs. The dependence of the pressure on the distance from the centre of the Earth r is mainly
determined by the gravitational interaction between the particles inside the Earth and the centrifugal forces due to the
daily rotation of the Earth, which does not exceed 0.3% of the gravitational forces. In view of this the isobars inside
the Earth and the boundaries of the liquid layer can be assumed to be spherical. Information on the internal structure
of the Earth is based on an investigation of the way in which seismic waves travel through it (Fig. 1).2,3

Suppose the core and the mantle of the planet are solid bodies. The system of coordinates C1x1x2x3 is connected
with the core, which occupies a region V1 = {r2

1 < a2, r1 = (x1, x2, x3)}, the point C1 is the mass centre of the core
and J1 = diag{A1, A1, C1} is the inertia tensor of the core with respect to the system of coordinates C1x1x2x3. We will
assume that the principal central moment of inertia C1 > A1 (this is related to the fairly rapid rotation of the planet about
the C1x3 axis). As regards the mantle, we will also assume that it occupies a region V2, the inner surface of which is
given by the equation r2

2 = b2, r2 = (y1, y2, y3) in the system of coordinates C2y1y2y3. Here C2 is the mass centre
of the mantle and b − a = l is the thickness of the liquid layer between the core and the mantle. The inertia tensor of
the mantle in the system of coordinates C2y1y2y3 is equal to J2 = diag{A2, A2, C2}, C2 > A2. The velocity field v(r, t),
a ≤ |r| ≤ b of the liquid will be considered on the assumption that the systems of coordinates C1x1x2x3 and C2y1y2y3
coincide, while the velocity field describing their mutual motion is not identically equal to zero and determines the
boundary values of the velocity field of points of the liquid layer.

The system of coordinates CX1X2X3 is connected with the mass centre of the planet, and its axes are parallel to the
axes of the inertial system of coordinates OX1X2X3, the origin of which is the mass centre of the planet and of the point
mass of mass m (see the figure). When the mass centre of the mantle is displaced with respect to the mass centre of
the core, the following vector equalities hold in the system of coordinates CX2X2X3

(1.1)

where m0, m1 and m2 are the masses of the liquid layer, the core and the mantle respectively, � is the density of the
liquid and Q is the vector C1C2.
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We further obtain Pk = �kQ + �krk, rk ∈ Vk (k = 1, 2), where P1 and P2 are the vectors of points of the core and the
mantle, �1 and �2 are orthogonal operators of transition from the systems of coordinates C1x1x2x3, C2y1y2y3 to the
system CX1X2X3. If Q = 0 and �1 = �2 = �0 the core of the planet is inside the mantle and their principal axes of inertia
coincide, while the liquid fills the spherical layer between the core and the mantle. The rotation operator �0 determines
the transition from the system of coorindates CX1X2X3 to the system Cz1z2z3, connected with the planet in unperturbed
motion.

When the planet moves, there are small displacements and rotations of the mantle of the planet with respect to
its core, with the exception of rotations about the axes of dynamic symmetry of the core and the mantle, which may
have a secular form. In the system of coordinates Cz1z2z3 this displacement is equal to q = �1

2Q, while the relative
rotation operator � = �−1

1 �2 is the matrix of rotation of the mantle with respect to the system of coordinates C1x1x2x3,
connected with the core. The displacement vector q is small in the sense that the ratio |q|/l is small. If the operators �1
and �2 are specified using the Euler angles, the following equalities will hold

(1.2)

The Euler angles �, �, � define the rotation operator �0 and describe the rotation of the planet, when its core and
mantle are a single whole, and the perturbations �k, �k, �k (k = 1, 2) are equal to zero. Using relations (1.2), we obtain

(1.3)

where the expression in square brackets is the square of the angle between the axes of symmetry of the core C1x3 and
the mantle C2y3. In (1.3) we have omitted terms of the third order of smallness and higher in the small quantities ��,
��. Unlike the case considered earlier5 the perturbation �� = �2 − �1 may have a secular character, since the core
and the mantle are not connected elastically, and the gravitational interaction in the system is independent of ��.

As the unperturbed motion of the system we will consider the motion of the planet as a rigid body, when there are
no relative displacements of the core, the mantle and the liquid. We will also assume that the mass centre of the planet
describes an elliptic orbit under the action of the gravitation of a point mass m and that the planet rotates with constant
velocity about the axis of symmetry. In the limited formulation of the problem, we will take the motion of the mass
centre of the planet as unperturbed and we will investigate the mutual motion of the core, the mantle and the liquid.

The kinetic energy of the system can be calculated using Koenig’s theorem and is equal to

where R is the vector connecting the mass centre of the planet and the point with mass m, �1, �2 are the angular
velocities of the core and the mantle in systems of coordinates connected with each of these, and v(r, t) is the velocity
field of the liquid in region V0 between the core and the mantle, specified in a uniformly rotating system of coordinates
Cz1z2z3. The following relations hold

In the Stokes approximation (we will assume that the Reynolds numbers Re = �−1l max(|q̇|, |�2�2 − �1�1|l) are
small) and assuming the flow to be quasi-stationary, the equations of motion of the viscous incompressible liquid in
the liquid layer in the uniformly rotating system of coordinates Cz1z2z3 and the boundary conditions on the surface of



V.G. Vil’ke / Journal of Applied Mathematics and Mechanics 70 (2006) 560–572 563

the core ∂V1 and on the inner surface of the mantle ∂V2 have the form6

(1.4)

Here � is the coefficient of kinematic viscosity of the liquid, p(r, t) is the pressure of the liquid and �g(r, t) is the
potential of the mass forces of gravitational interaction of all parts of the system. Henceforth, when determining the
velocity field we will neglect small displacements of the mantle with respect to the core (the vector q) and we will
assume that Eq. (1.4) hold in the spherical layer V0 = {r:a ≤ |r| ≤ b} and on its boundaries respectively.

The equations of motion and continuity (1.4) are linear in the unknown functions p(r, t) v(r, t), which enables us to
obtain their solution in the form

where the functions introduced satisfy the following equations and boundary conditions

(1.5)

(1.6)

(1.7)

Bearing in mind the spherical symmetry of the region occupied by the liquid, it is more convenient to solve problem
(1.5), (1.6) in a spherical system of coordinates, assuming that the velocity of the mantle with respect to the core q̇ is
directed along the Cz axis. Subtracting the velocity of translational motion of the core from the velocity field of the
liquid, we obtain problem (1.5), (1.6) with the changed boundary conditions

Here �r(r, �), ��(r, �) are the components of the velocity field of the liquid in a spherical system of coordinates, while
the component of the velocity field corresponding to the angle � of the spherical system of coordinates is identically
equal to zero.

By analogy with the Stokes solution, we will obtain the solution of this problem in the form

The coefficients A, B, C and D are found from the boundary conditions

The stresses on elements of the surface of the spherical core, taking the boundary conditions and the incompressibility
condition into account, are6

Here � = �� and the prime denotes differentiation with respect to r.
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The resulting pressure on the core is directed along the vector q̇ and is calculated from the formula

The force acting on the inner surface of the mantle, is equal in value and opposite in direction to the force F1, while
the corresponding dissipative function has the form

(1.8)

Problem (1.5), (1.7) is also solved in spherical coordinates.6 As a result we determine the moment of interaction of
the core and the mantle due to their mutual rotation and the corresponding dissipative function

(1.9)

It remains to consider the potential component of the pressure

in the liquid layer and the action of this pressure on the mantle and on the core of the planet. We will consider the work
due to virtual displacements of the field of potential forces −��(r, t), r ∈ V0, where V0 is the region occupied by the
liquid. Using Gauss’ formula and the condition of incompressibility of the liquid, we can represent this work in the
form

(1.10)

Here 	R(r) is the field of virtual displacements which satisfy the relations div 	R = 0, and n(r, t) is the outward normal
to the surface of the liquid layer.7

Note that on the boundary of the liquid layer the virtual displacements are identical with the virtual displacements
of the corresponding points of the surface of the core or of the inner surface of the mantle. Using this fact, we will split
the last integral in (1.10) into two integrals. We apply Gauss’ formula to each of these, extending the field of virtual
displacements on the surface of the core into the region occupied by the core, like the field of virtual displacements of
the core, and we extend the field of virtual displacements, specified on the inner surface of the mantle inside the whole
core like the field of virtual displacements of the mantle, extended over the whole inner surface. As a result we obtain

where n1(r, t) is the outward normal to the surface of the core, 	R1(r) is the field of virtual displacements of points of
the core as a solid body, n2(r, t) is the outward normal to the inner surface of the mantle, directed towards the mantle,
and 	R2(r) is the field of virtual displacements of points inside the whole cavity of the mantle, which is identical with
the analogous field of a solid body, rigidly connected to the mantle. The property obtained holds for any form of the
cavity filled with an incompressible liquid.

We will consider the motion of the core and the mantle of the planet with respect to an inertial system of coordinates
OX1X2X3, using Lagrange’s equations of the second kind. We will take as the generalized coordinates the coordinates
of the vector q and the perturbations of the Euler angles �k, �k, �k (k = 1,2), while the radius vector R, connecting the
mass centre of the planet and the point mass m, corresponds to the unperturbed motion (see the figure).

As was shown above, the gravitational interaction of the core, mantle and liquid remains unchanged if we assume
that the whole cavity V1 ∪ V0 (the sphere inside the mantle) is filled with an incompressible liquid of density �, while
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the density of the material in the spherical region, occupied by the core, is reduced by the value of the density of
the liquid �. The assumption that the corresponding regions are spherical is unimportant. From the point of view of
gravitational interaction of the parts of the planet, and also of its gravitational interaction with external bodies, the
planet can be assumed to consist of two solid parts: a mantle with an additional inner spherical cavity, represented by
a solid body of constant density �, and a core, the density of the material of which is reduced by an amount �. The
interaction between the core and the mantle is made up of their gravitational interaction and the interaction related to
the presence of a layer of uniform viscous liquid between them. The gravitational interaction potential has the form5

where r0 is the outer radius of the mantle (the radius of the planet) and 
 is the universal gravitational constant.
We will determine the action on the core and on the mantle of the planet of the component of the pressure p0, related

to the rotation of the system of coordinates Cz1z2z3 and equal to �[� × r]2/2. By changing from surface integrals to
volume integrals we can obtain an expression for the equivalent potential of the centrifugal forces

in which we have omitted the last term, which is independent of the generalized coordinates. Taking the last expression
for the potential of the centrifugal forces into account, we can represent the difference in the kinetic energy of the
core-mantle system and the potential of the centrifugal forces in the form

We will obtain the potential energy of the gravitational interaction of the three components of the planet with the
point mass m. The presence of a liquid layer between the core and the mantle can be taken into account by adding
to the mantle a body of mass m02 with constant density completely filling the region V0 ∪ V1. At the same time, one
must reduce the density of the material comprising the core of the planet by the value of the liquid density �. Hence,
the gravitational interaction of the planet with the external point mass reduces to the interaction with this mass of two
solids – the modified mantle and the modified core. By relations (1.1), the potential energy of this interaction can be
represented by the functions8

(1.11)

In relations (1.11) there are terms, the order of smallness of which is determined by the power of the ratio r0/R, and
small terms of the order of |q|/R, ��, �� and higher. Taking this into account, we retain in expression (1.11) terms of
the lowest order of smallness and we obtain
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In this limited formulation of the problem, the mass centre of the planet moves in an unperturbed Kepler orbit, while
the core and the mantle of the planet constitute a single whole – a rigid body which rotates with constant velocity about
the axis of symmetry. Hence, the unperturbed motion of the system is described by the relations

Here p, e and ϑ are a parameter, the eccentricity and true anomaly of the orbit of the mass centre of the planet. The
Lagrange function is represented in the form

(1.12)

We will use the Lagrange function (1.12) to set up the equations of motion of the mechanical system.

2. The equations of motion and investigation of their solutions

Lagrange’s equation in the variable q, taking the dissipative function (1.8) into account, has the form

(2.1)

In Eq. (2.1) we have retained terms that are linear in the variables q, �k, �k (k = 1, 2). If the trivial solution of
homogeneous equation (2.1) is asymptotically stable, its particular solution will describe forced oscillations about
the position of relative equilibrium. Since the eccentricities of the orbits of planets of the Solar System are fairly
small, it is of some interest initially to consider circular orbits, when e = 0 and p = R. In Eq. (2.1) there are two periodic
functions of time, corresponding to the frequency of natural rotation of the planet � and the frequency of orbital motion
�̇ = � =

√

mR−3. We will assume that � � � and average all the coefficients of the variables q, �k, �k (k = 1, 2)

over the variables � and ϑ, and we will average the perturbing forces solely over the variable �. As a result, Eq. (2.1)
takes the form

(2.2)

Eq. (2.2) is equivalent to a system of three second-order differential equations, which can be split into a system of
equations in the variables q1, and q2 and an equation in the variable q3. Moreover, Eq. (2.2) do not contain the variables
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�k, �k (k = 1, 2). The equations in the variables q1 and q2 can be represented in the form

(2.3)

where

(2.4)

Eq. (2.2) can be represented in projections onto the Cz3 axis in the form

(2.5)

The system of Eq. (2.3) can be written more conveniently in the form of a single equation in the complex variable
z = q1 + iq2. As a result we obtain a homogeneous linear equation with constant coefficients

(2.6)

the general solution of which has the form

where E+ and E− are arbitrary complex constants.
According to the second formula of (2.4), the coefficient k12 < 0 and Re+ > 0, Re− < 0. Consequently, the trivial

solution of Eq. (2.6) is unstable: the solution corresponding to the root of the characteristic equation − attenuates,
while that corresponding to + increases. As a result, the projection of the centre of the core onto the equatorial plane
(the plane Cz1z2) describes an uncoiling spiral. This motion can be described by the formula

It follows from physical considerations that as the distance of the centres of the core and the mantle from the
centre of the planet increases in the unperturbed motion of the point C, parts of the core and the mantle fall within the
zone where the pressure is insufficient to maintain the phase states. This means that, on the part of the core surface
receding from the centre of the planet, due to the reduction in the pressure, the solid phase will transfer into the
liquid phase, and on the opposite side of the core, the reverse will occur, namely, the liquid phase will convert into
the solid phase. A similar pattern will be observed on the inner surface of the mantle: in regions where the mantle
approaches the core, the material will convert from the solid phase into the liquid phase, while on the opposite side,
the liquid phase will convert into the solid phase. The modulus of the number z(t) will not increase to infinity and in
steady motion it will be constant. In this case the projection of the vector q onto the equatorial plane of the planet
will rotate with a period of 2�|Im+|−1/2. The value of the displacement of the core with respect to the mantle in the
equatorial plane depends on the physical properties of the planet material and on the pressure distribution inside the
planet.

Natural oscillations of the core with respect to the mantle in the projection onto the axis of symmetry Cz3 will
be attenuated, since in Eq. (2.5) the quantities d10 and k3 are positive. As a result, after a certain time only forced
oscillations will be observed, described by the formula
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Lagrange’s equations, corresponding to the angular variables �k, �k, �k, (k = 1, 2), after linearization and averaging
of the coefficients of the equations over the fast variables � and g, and on the right-hand sides of the equations only
with respect to the fast variable �, take the form

(2.7)

(2.8)

(2.9)

When setting up Eqs. (2.7)–(2.9) we took into account the dissipative function (1.9). The expressions for the
coefficient d2 in Eqs. (2.7)–(2.9) represent the difference in the angular velocities of the mantle and the core of the
planet in projections onto the axes of rotation, corresponding to changes in the Euler angles �, �, �. In projections onto
the axes of the system of coordinates Cz1z2z3, connected with the planet in the unperturbed motion, the difference in
the angular velocities of the mantle and the core can be represented in the form

(2.10)

Here e1, e2, e3 are the unit vectors of the system of coordinates Cz1z2z3.
The linear system of Eqs. (2.7)–(2.9) contains two cyclic coordinates, �1 and �2, while the structure of the system

is such that one can reduce its order from the twelfth to the eighth, thereby eliminating these coordinates from Eqs.
(2.7) and (2.8), using Eq. (2.9). As a result, we obtain a system consisting of Eq. (2.7), in which the second term on the
left-hand side is not present and the coefficient of d2 is represented in the form ��̇ sin � − �̇ sin ���, and Eq. (2.8);
we will call this System S.

We will investigate System S within the framework of the approximate theory of gyroscopes, neglecting the sec-
ond derivatives of the angular variables, which eliminates the fast nutational oscillations with small amplitude from
consideration. In this case, System S can be represented in the form

(2.11)

Here we have introduced the following notation
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The question of the stability of the trivial solution of the homogeneous system of Eq. (2.11) reduces to investigating
the roots of the characteristic equation, which has the form

Hence it follows that one root is equal to zero (a consequence of the first integral H1�1 + H2�2 = const), while the
two other roots have negative real parts.

The particular solution corresponding to constant perturbation on the right-hand side of Eq. (2.11), can be obtained
in the form

As a result, we have

(2.12)

The periodic particular solution satisfies equations obtained from system (2.11)

(2.13)

We will seek a solution of system (2.13) in the form

The complex coefficients X and Y satisfy a system of linear algebraic equations, which follow from Eq. (2.13),

As a result, we find

(2.14)
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According to relations (2.10) we obtain the vector of the relative angular velocity �0 for the steady motion, described
by Eqs. (2.12) and (2.14), where

(2.15)

Since the angular velocity of the mantle relative to the core is small and the systems of coordinates C1x1x2x3 and
C2y1y2y3, connected with the mantle and the core, are close to one another, the mutual position can be conveniently
described by the Krylov angles �, �, 
, assuming9

The last vector equation is obtained taking relation (2.10) into account, and from it we obtain the following equations,
apart from small second-order terms inclusive in the Krylov angles and their derivatives,

The components of the angular velocity �̇ and �̇ are small and are represented by the sum of harmonics with
frequencies � and � ± 2 �, while the component 
̇, in addition to the harmonics mentioned above, has a constant
component 〈−�̇�〉, where the angular brackets denote average over time of the quantities in the brackets. Taking
relations (2.10), (2.12) and (2.15) into account as well as the smallness of the ratio 2 �/�, we obtain an approximate
estimate for the mean angular velocity in the form

(2.16)

A similar effect is found in gyroscopic devices on a fixed base.9 Under steady-state conditions ��̇ = −��̇ cos �.
If the core and the mantle of the planet are dynamically similar to one another, this means equality of the ratios

A1C
−1
1 = A2C

−1
2 , in which case Q = 0 and B1 = 0, and none of the mechanical effects mentioned above are present,

i.e. the core and the mantle of the planet move as a single rigid body.
The above analysis of the equations of motion has been based on approximate equations obtained by averaging over

the fast variables, and a number of assumptions regarding the terms containing the acceleration, which, naturally, leads
to approximate results.

3. Mutual motions of the core and the mantle in the Earth-Moon system

As an example, we will consider the Earth-Moon system, which uses the data in Ref. 3 on the structure of the Earth.
We will use the kilogram, the meter and the second as the fundamental units of dimensional quantities and we will
take the following numerical values of the quantities required for the calculations:

for the solid core of the Earth

for the mantle
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for the liquid spherical layer

The radius of the Earth, the angular velocities of the secular rotation and of the rotation of the Moon around the
Earth are, respectively

For the angle of inclination of the axis of the Earth to the Moon’s orbital plane we take � = 23◦.
As a result of a calculation using the formulae derived in Section 2, we obtain the following numerical values of

the quantities

No reliable data are available at the present time on the viscous properties of the liquid layer of the Earth. We will
take as an estimate � = 5 × 107 Pa s.3 Hence we obtain the coefficients in Eq. (2.3)

while the roots of the characteristic equation are

The root − defines the attenuating natural oscillations of the centre of the core with respect to the mantle in a
projection onto the plane Cz1z2. This motion can be treated as a displacement of a point in the plane along a spiral,
coiled round the origin of coordinates. The period of rotation round the spiral is about 12.5 hours. The second root
+, on the other hand, defines the motion along an unwinding spiral with a period of about 9.5 days. This motion
represents instability of the equilibrium position and, as was noted above, should lead to a certain steady motion of
the centre of the planet core about the mantle due to the occurrence of phase transitions between the liquid layer,
the core and the mantle. It is possible to determine the radius of this steady motion using corresponding models of
the phase transitions and the temperature distribution inside the Earth. These problems are outside the scope of this
paper.

The motion of the centre of the core with respect to the centre of the mantle in a projection onto the Cz3 axis is
described by Eq. (2.5), the coefficients in which are

As a result, we obtain forced oscillations about the Cz3 axis in the form

The motion is represented as the sum of two harmonic oscillations, one of which has an amplitude of 85 cm and
a period of one month, while the second has an amplitude of 6 cm and a period of a third of a month. To estimate
the rotations of the core with respect to the mantle in steady motion, we will use formulae (2.12) and (2.14). The
corresponding parameters for the Earth were taken as follows:



572 V.G. Vil’ke / Journal of Applied Mathematics and Mechanics 70 (2006) 560–572

As a result, we obtain the following steady values of the variables

The mean angular velocity of rotation of the core with respect to the mantle is estimated using formula (2.16) to be
〈
̇〉 = −3.5 × 10−12. This indicates that, in a year, the core of the planet rotates by an angle of 0.38′ with respect to
the mantle.

In addition to constant deviations of the axes, connected with the core of the planet, from the axes connected with
its mantle, there are periodic changes in the angles between them at a frequency of 2 �, the amplitudes of which are
given by formulae (2.14). A calculation of the values of these amplitudes for the numerical values of the parameters
given above leads to the following estimates

This means that the angle between the axes of symmetry of the mantle and the core varies periodically with these
amplitudes. According to measurements of the angular velocity of rotation of the Earth, harmonics with a period of
half a month are found in its spectrum.3

The dynamic effects described above may be the reason for seismic activity, together with tidal effects in the
deformable mantle and core of the Earth.
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